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Abstract
A new approach to classification of integrable hydrodynamic chains is
established. Generating functions of conservation laws are classified by the
method of hydrodynamic reductions. The N parametric family of explicit
hydrodynamic reductions allows us to reconstruct corresponding hydrodynamic
chains. Many new hydrodynamic chains are found.
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1. Introduction

The first integrable hydrodynamic chain

Ak
t = Ak+1

x + kAk−1A0
x, k = 0, 1, 2, . . . (1)

was derived in [1]. The integrability of this hydrodynamic chain was developed in a set of
publications [2–5]. The ‘integrability’ means the existence of infinitely many conservation
laws

∂tHk(A
0, A1, . . . , Ak) = ∂xGk(A

0, A1, . . . , Ak+1), k = 0, 1, 2, . . . (2)

and infinitely many commuting flows (see [2])

Ak
tm = [kAk+n−1∂x + n∂xA

k+n−1]
∂Hm+1

∂An
, k, n,m = 0, 1, 2, . . . ,

where x ≡ t0, t ≡ t1, H0 = A0, H1 = A1, H2 = A2 + (A0)2, H3 = A3 + 3A0A1, . . . .

The first commuting flow is

Ak
y = Ak+2

x + A0Ak
x + (k + 1)AkA0

x + kAk−1A1
x, k = 0, 1, 2, . . . , (3)

where y ≡ t2. Eliminating the moments A1 and A2 from the equations

A0
t = A1

x, A1
t = ∂x[A2 + (A0)2/2], A0

y = ∂x[A2 + (A0)2]
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one can obtain the Khohlov–Zabolotzkaya equation

A0
t t = ∂x

[
A0

y − A0A0
x

]
, (4)

which is the dispersionless limit of the KP equation. The compatibility condition ∂t (py) =
∂y(pt ) of two generating functions of conservation laws for the Benney hydrodynamic
chain (1)

pt = ∂x

(
p2

2
+ A0

)
(5)

and for its first commuting flow (3)

py = ∂x

(
p3

3
+ A0p + A1

)
(6)

yields (4). Thus, the integrability of this equation is equivalent to the integrability of the
Benney hydrodynamic chain (see [6–9]). Substituting the series

p = λ − H0

λ
− H1

λ2
− H2

λ3
− · · · (7)

into both the above equations one can obtain (2) and the infinite series of conservation laws
for (3),

∂yHk(A
0, A1, . . . , Ak) = ∂xQk(A

0, A1, . . . , Ak+2), k = 0, 1, 2, . . .

Later many integrable hydrodynamic chains

Ak
t =

k+1∑
n=0

Fk
n (A)An

x, k = 0, 1, 2, . . . ,
∂F k

n

∂Am
= 0, m > k + 1 (8)

and corresponding 2+1 quasilinear equations (see, for instance, (4)) were found in [10–16].
Recently, some of these integrable hydrodynamic chains have been rediscovered (see [17])
and studied in [17–22].

At this moment we have several tools allowing us to find a complete classification of the
integrable hydrodynamic chains (8) and more complicated hydrodynamic chains

Ak
t =

Nk∑
n=0

Fk
n (A)An

x, k = 0, 1, 2, . . . ,
∂F k

n

∂Am
= 0, m > Mk, (9)

where Nk and Mk are some integers.

(1) The existence of an extra commuting flow (an external method), successfully used for the
Egorov hydrodynamic chains (see [12]);

(2) The existence of an extra conservation law (an external method), successfully used for the
Kupershmidt Poisson bracket (see [10] and [34]) and for (an incomplete classification)
the Kupershmidt–Manin Poisson bracket (see [10]);

(3) Vanishing of the Haantjes tensor (an internal method), successfully (unfinished
classification) used for the integrable hydrodynamic chains (8) and successfully (complete
classification) for the Kupershmidt–Manin Poisson bracket (see [16]).

In this paper, we establish the combined method based on three key tools, previously
successfully utilized in the theory of 2+1 hydrodynamic-type systems and 2+1 quasilinear
equations (see [11, 13–15]). These are method of hydrodynamic reductions (see [5, 13]) and
the method of pseudopotentials (see [11–13]) combined with the ‘concept’ of the Gibbons
equation (see [23]).
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This paper is organized in the following order. In the second section the concept of
the Gibbons equation is introduced. In comparison with [5] hydrodynamic reductions are
described in a conservative form. In the third section a new approach of the classification
of integrable hydrodynamic chains via their generating functions of conservation laws is
established. In the fourth section explicit hydrodynamic reductions associated with local
Hamiltonian structures are discussed. In the fifth section the simple (but nontrivial)
generalization of the Benney hydrodynamic chain is investigated. N parametric family of
the Hamiltonian hydrodynamic reductions is found. The corresponding Riemann surface is
constructed. Thus, N series of conservation laws and commuting flows can be found (see [23]),
then infinitely many particular solutions can be obtained by the generalized hodograph method
(see [24]). In the sixth section another integrable hydrodynamic chain is described, whose
hydrodynamic reductions coincide with hydrodynamic reductions of the hydrodynamic chain
described in the fifth section. One particular case of this hydrodynamic chain is connected
with 2+1 quasilinear equation determined by the ‘integrable’ Lagrangian considered in [15].
In the seventh section three different approaches allowing us to construct commuting flows
are presented. The Miura-type transformation is used for links between some well-known
hydrodynamic chains and corresponding 2+1 quasilinear systems via generating functions of
conservation laws. In the eight section we briefly mention the general case of generating
functions of conservation laws connected with arbitrary integrable hydrodynamic chains.
This general case is closely connected with the Hamiltonian hydrodynamic chains considered
in [25].

2. The Gibbons equation

The Benney hydrodynamic chain (1) is connected with the formal series

λ = p +
A0

p
+

A1

p2
+

A2

p3
+ · · · (10)

by the Gibbons equation (see details below)

λt − pλx = ∂λ

∂p

[
pt − ∂x

(
p2

2
+ A0

)]
.

The method of hydrodynamic reductions suggested in [5] (and developed in [13]) means the
existence of infinitely many sub-systems (which are called the ‘hydrodynamic reductions’)

ri
t = pi(r)ri

x, i = 1, 2, . . . , N, (11)

where all moments Ak are functions of N Riemann invariants rk . This hydrodynamic-type
system must be consistent with the generating function of conservation laws (5). Then one
can obtain

∂ip = ∂iA
0

pi − p
. (12)

The compatibility conditions ∂i(∂kp) = ∂k(∂ip) yield the system in involution

∂ip
k = ∂iA

0

pi − pk
, ∂ikA

0 = 2
∂iA

0∂kA
0

(pi − pk)2
, i �= k, (13)

which we call the Gibbons–Tsarev system.
Any hydrodynamic reduction (11) can be written via first moments Ak (k = 0, 1, . . . ,

N − 1), where all other moments An (n = N,N + 1, . . .) are functions of the first N moments
Ak (see details in [5]).
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Also, any hydrodynamic reduction (11) can be written in the conservative form (see (5))

ai
t = ∂x

(
(ai)2

2
+ A0(a)

)
, i = 1, 2, . . . , N, (14)

where the function A0 satisfies the Gibbons–Tsarev system (written via field variables ak)

(ai − ak)∂ikA
0 = ∂kA

0∂i

(∑
∂nA

0
)

− ∂iA
0∂k

(∑
∂nA

0
)

, i �= k,

(ai − ak)
∂ikA

0

∂iA0∂kA0
+ (ak − aj )

∂jkA
0

∂jA0∂kA0
+ (aj − ai)

∂ijA
0

∂iA0∂jA0
= 0, i �= j �= k,

(15)

which is a consequence of the compatibility conditions ∂i(∂kp) = ∂k(∂ip)

p − ai

∂iA0

∑ ∂inA
0

p − an
− p − ak

∂kA0

∑ ∂knA
0

p − an
+

(ai − ak)∂ikA
0

∂iA0∂kA0

(∑ ∂nA
0

p − an
− 1

)
= 0, (16)

where ∂i ≡ ∂/∂ai and (cf (12))

∂ip = ∂iA
0

p − ai

(∑ ∂nA
0

p − an
− 1

)−1

. (17)

Example. The simplest hydrodynamic reduction is given by A0 = ∑
εka

k . This is the
so-called waterbag reduction (see [6, 26]). Then (17)

∂ip = εi

p − ai

(∑ εn

p − an
− 1

)−1

can be integrated. The equation of the Riemann surface

λ = p −
∑

εk ln(p − ak), (18)

where λ is an integration factor, can be expanded (at the infinity λ → ∞, p → ∞) in the
formal series (10), where Ak = �εi(a

i)k+1/(k + 1), if �εi = 0. If �εi �= 0, then first the
parameter λ in the equation of the Riemann surface must be re-scaled,

λ −
∑

εk ln λ = p −
∑

εk ln(p − ak).

Then all other moments Ak are some non-homogeneous polynomials of �εi(a
i)k .

This is not a unique choice. For instance, any hydrodynamic reductions can be written in
a conservative form in infinitely many ways. Let us mention just two simplest choices here
(all other are discussed in [23]):

1. ai
t = ∂x

(
(ai)2

2
+ A0(a, b)

)
, bi

t = ∂x(a
ibi) i = 1, 2, . . . , N,

2. ai
t = ∂x

(
(ai)2

2
+ A0

)
, A0

t = ∂xA
1(a) i = 1, 2, . . . , N.

(19)

For the first choice, the simplest hydrodynamic reduction is given by A0 = �bk; for the
second choice A1 = �bk .

The Riemann invariants are most suitable coordinates to prove such general properties
like the existence of infinitely many hydrodynamic reductions parameterized by N arbitrary
functions of a single variable (see [5]), but they are very inconvenient for a search of particular
and explicit hydrodynamic reductions. Vice versa, it is very difficult to derive the Gibbons–
Tsarev system in the coordinates ak (see (17)), but explicit particular hydrodynamic reductions
can be found naturally in many cases (see a lot of examples in [22]).
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The phenomenological algebro-geometric approach for integrability of symmetric
hydrodynamic-type systems

ai
t = ∂xψ(a1, a2, . . . , aN ;p)|p=ai (20)

was formulated in [23].

Statement 1. If the symmetric hydrodynamic-type system (20) is integrable, then this system
has the generating function of conservation laws

pt = ∂xψ(a1, a2, . . . , aN ;p). (21)

Statement 2. Then some function λ(a1, a2, . . . , aN ;p) satisfies the Gibbons equation

λt − ∂ψ

∂p
λx = ∂λ

∂p
[pt − ∂xψ(a;p)]. (22)

We call the function λ(a1, a2, . . . , aN ;p) the equation of the Riemann surface. This
function is a solution of the set of linear PDE’s

Ak
i

∂λ

∂uk
+

∂ψ

∂ui

∂λ

∂p
= 0,

where the matrix Ak
i is given by

Ak
i (u;p) =

(
∂ψ

∂p

∣∣∣∣
p=ui

− ∂ψ

∂p

)
δk
i +

∂ψ

∂ui

∣∣∣∣
p=uk

.

The Gibbons equation (22) describes a deformation of the Riemann surface λ(a;p). This
equation has three distinguish features:

(1) if one fixes λ = const (free parameter), then one obtains (21),
(2) if one fixes p = const (free parameter), then one obtains the kinetic equation

(a collisionless Vlasov equation) written in the so-called Lax form

λt1 = {λ, Ĥ} = ∂λ

∂x

∂Ĥ
∂p

− ∂λ

∂p

∂Ĥ
∂x

,

where Ĥ = ψ(a;p).
(3) if one chooses coordinates, which are the Riemann invariants determined by the condition

∂λ/∂p = 0, then the corresponding hydrodynamic-type system (20) can be written in the
diagonal form (cf (11))

ri
t1 = µi(r)ri

x, i = 1, 2, . . . , N, (23)

where the characteristic velocities

µi = ∂ψ

∂p

∣∣∣∣
p=pi

can be found from the algebraic system det Ak
i (u;p) = 0; then the corresponding values

pi can be expressed via the Riemann invariants rk . In this algebro-geometric construction
the Riemann invariants are the branch points ri = λ|∂λ/∂p=0 of the Riemann surface
(exactly as it is in the Whitham theory, see [8, 27]).

Example. The dispersionless limit of the vector NLS (see (19) and [3])

ai
t = ∂x

(
(ai)2

2
+

∑
bn

)
, bi

t = ∂x(a
ibi), i = 1, 2, . . . , N (24)
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is the first known hydrodynamic reduction of the Benney hydrodynamic chain (1) determined
by the moment decomposition Ak = ∑

(ai)kbi . In such a case the formal series (10) reduces
to the equation of the Riemann surface

λ = p +
∑ bk

p − ak
. (25)

The Zakharov reduction (24) written in the Riemann invariants (23) (see (11))

ri
t = pi(r)ri

x, i = 1, 2, . . . , 2N,

where the characteristic velocities pi(r) can be found from (∂λ/∂p = 0)

1 =
∑ bk

(p − ak)2

has infinitely many conservation laws, which can be obtained from (25) with the aid of the
Bürmann–Lagrange series (see, for instance, [28] and some details in [23]).

The compatibility conditions ∂i(∂kp) = ∂k(∂ip) must be valid identically for any
symmetric hydrodynamic-type system (20), but a whole set (parameterized by N arbitrary
functions of a single variable) of such symmetric hydrodynamic-type systems (for each fixed
function ψ(a;p)) is described by these compatibility conditions ∂i(∂kp) = ∂k(∂ip).

Thus, the problem of the description of semi-Hamiltonian symmetric hydrodynamic-type
system is the problem of the classification of integrable hydrodynamic chains.

3. The Gibbons–Tsarev system

The main claim of this paper is that the classification of integrable hydrodynamic chains (9)
is equivalent to the classification of the generating functions of conservation laws (21) by the
method of hydrodynamic reductions (see [5, 13]).

In this section we derive integrability conditions, which are a nonlinear PDE’s system
in involution. This extended Gibbons–Tsarev system generalizes the Gibbons–Tsarev system
obtained in [5] and describes a set of generating functions of conservation laws together with
their hydrodynamic reductions parameterized by N arbitrary functions of a single variable.

The simplest case is

pt = ∂xψ(u;p). (26)

Let us first introduce the new notations

fi ≡ f (u, pi, p) = ψu

ψp|p=pi − ψp

, fik ≡ f (u, pi, pk) = ψu|p=pk

ψp|p=pi − ψp|p=pk

, i �= k,

(27)

ϕik(u, pi, pk, p) ≡ fik∂pkfk − fki∂pi fi + fi∂pfk − fk∂pfi − ∂u(fi − fk)

fi − fk

, i �= k. (28)

Differentiating the generating function of conservation laws (26) with respect to the Riemann
invariants ri (see (23)), one obtains

∂ip = fi∂iu. (29)

If p = pk (k �= i), then (29) reduces to

∂ip
k = fik∂iu. (30)
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The compatibility condition ∂k(∂ip) = ∂i(∂kp) yields

∂iku = ϕik∂iu∂ku. (31)

Thus, the nonlinear PDE’s system (30), (31) is in involution iff the functions ϕik do not
depend on p and the compatibility conditions ∂j (∂ip

k) = ∂i(∂jp
k) and ∂j (∂iku) = ∂i(∂jku)

are fulfilled identically. We call the system (30), (31) the Gibbons–Tsarev system (cf (13)).
However, in general case the functions ϕik depend on p. The compatibility conditions

∂k(∂ip
j ) = ∂i(∂kp

j ) yield (cf (31))

∂iku = ϕ̄ik∂iu∂ku, (32)

where (cf (28))

ϕ̄ik(u, p) ≡ ϕik(u, pi, pk, p)|p=pj , i �= j �= k.

Thus, the Gibbons–Tsarev system is determined by (30) and (32).
Finally, one must check the compatibility conditions ∂j (∂iku) = ∂i(∂jku)

∂u(ϕik − ϕjk) + ϕij (ϕik − ϕjk) + fji∂pi ϕik + fjk∂pkϕik + fj∂pϕik

= fij ∂pj ϕjk + fik∂pkϕjk + fi∂pϕjk

following from (31), and the compatibility conditions ∂j (∂iku) = ∂i(∂jku) following from (32).
Such an over-determined nonlinear PDE system is said to be the extended Gibbons–Tsarev
system.

Let me emphasize that the extended Gibbons–Tsarev system is a system on the sole
function ψ(u;p) only. The general solution of this system yields a classification of integrable
hydrodynamic chains.

Remark. Any N hydrodynamic reduction (23) can be written in the conservative form
(see (26))

ai
t = ∂xψ(u(a); ai), i = 1, 2, . . . , N. (33)

If the function ψ(u(a);p) determines the integrable hydrodynamic-type system (33), then
the compatibility conditions ∂i(∂kp) = ∂k(∂ip) satisfy identically, where ∂k ≡ ∂/∂ak and
(cf (17))

∂ip = ψu∂iu

ψp|p=ai − ψp

[
1 +

∑ ψu|p=ak ∂ku

ψp|p=ak − ψp

]−1

. (34)

If the function ψ(u;p) determines the integrable hydrodynamic chain, then the compatibility
conditions ∂i(∂kp) = ∂k(∂ip) describe its N component hydrodynamic reductions
parameterized by N arbitrary functions of a single variable. If the function ψ(u;p)

is unknown, then the compatibility conditions ∂i(∂kp) = ∂k(∂ip) and the compatibility
conditions ∂j (∂iku) = ∂i(∂jku) yield the extended Gibbons–Tsarev system.

Let us finally emphasize: the Gibbons–Tsarev system describes N component
hydrodynamic reductions parameterized by N arbitrary functions of a single variable for
any a priori given function ψ(u;p); the extended Gibbons–Tsarev system describes all
possible functions ψ(u;p) and their N component hydrodynamic reductions parameterized
by N arbitrary functions of a single variable.
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4. Explicit Hamiltonian hydrodynamic reductions

Suppose the hydrodynamic reductions (14) of the Benney hydrodynamic chain (1)
(simultaneously, they are hydrodynamic reductions of the Khohlov–Zabolotzkaya
equation (4)) are Hamiltonian (see details in [29])

ai
t = 1

εi

∂x

∂h
∂ai

,

where εi are arbitrary constants. Then the Hamiltonian density h = �εk(a
k)3/6 + f (�),

where � = �εka
k and f ′(�) = A0(�). Substitution A0(�) into (16) yields the choice

A0(�) = � only (up to an insufficient constant factor). This is exactly the so-called waterbag
hydrodynamic reduction (see (18)).

Thus, the main claim of this section is that the Hamiltonian hydrodynamic reductions
(cf (33))

ai
t = ∂xψ(u; ai)

for any hydrodynamic chain determined by the the generating function of conservation laws
(see (22) and (26))

pt = ∂xψ(u;p),

one can seek in the form

ai
t = ∂x


δi

∂h
∂ai

+ γi

∑
k �=i

γk

∂h
∂ak


 , (35)

where δi and γi are some constants (see examples in [23]).
The second step is a reconstruction of the Riemann surface determined by the equation

λ(u;p) by virtue of (35) and a computation of the moments Ak = �f k
n (an), where the

functions f k
n (an) are determined from the expansion of the equation of the Riemann surface

at infinity (λ → ∞, p → ∞). Couple of examples are considered below.

5. Generalized Benney hydrodynamic chain

In this section, we restrict our consideration on the first simple and very important particular
case (cf (5))

pt = ∂x[U(p) + u]. (36)

Theorem. N component hydrodynamic reductions (23)

ri
t = U ′(pi)ri

x

are described by solutions of the Gibbons–Tsarev system (cf (13))

∂iku = 2αU ′(pi)U ′(pk) + β[U ′(pi) + U ′(pk)] + 2γ

(U ′(pi) − U ′(pk))2
∂iu∂ku,

∂ip = ∂iu

U ′(pi) − U ′(p)
, ∂ip

k = ∂iu

U ′(pi) − U ′(pk)
,

(37)

where the function U(p) is a solution of the second-order ODE with respect to the independent
variable p

U ′′(p) = αU ′2(p) + βU ′(p) + γ. (38)
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The compatibility conditions ∂j (∂ikA
0) = ∂i(∂jkA

0) are identically satisfied for any
constants α, β, γ . In general case (α �= 0) the function U(p) can be written in the parametric
form only,

U = 1

α(q1 − q2)
[q1 ln(q − q1) − q2 ln(q − q2)],

p = 1

α(q1 − q2)
[ln(q − q1) − ln(q − q2)].

If α = 0, but β �= 0, then without lost of generality U = ep; if β = 0, then U = p2/2; if
α �= 0, but β = 0 and γ = 0, then U = ln p; if α �= 0, but β = 0, then U = ln sinh p (or
U = ln cosh p).

The first step in the reconstruction of integrable hydrodynamic chains is an extracting of
any explicit hydrodynamic reduction (see (33))

ai
t = ∂x[U(ai) + u(a)]. (39)

Then the compatibility conditions ∂i(∂kp) = ∂k(∂ip) yield (cf (15), (16)) (38) two distinct
index relationships

[U ′(ai) − U ′(ak)](∂iku + α∂iu∂ku) = ∂ku∂i

(∑
∂nu

)
− ∂iu∂k

(∑
∂nu

)
, (40)

and three distinct index relationships

[U ′(ai) − U ′(ak)]∂ju∂iku + [U ′(ak) − U ′(aj )]∂iu∂jku + [U ′(aj ) − U ′(ai)]∂ku∂iju = 0,

where (see (34))

∂ip = ∂iu

U ′(ai) − U ′(p)

(∑ ∂ku

U ′(ak) − U ′(p)
+ 1

)−1

. (41)

Following the previous section we are looking for the Hamiltonian hydrodynamic
reductions (39)

ai
t = ∂x[U(ai) + u(a)] = 1

εi

∂x

∂h
∂ai

. (42)

Theorem. The Hamiltonian hydrodynamic reductions (42) are determined by the Hamiltonian
density h = �εk

∫
U(ak) dak + f (�), where � = �εka

k, f ′(�) = u(�) and u(�) = �, if
α = 0; u(�) = ln(�), if α �= 0.

Proof. It can be obtained by the substitution (42) into (40). �

The equation of the Riemann surface (see (41)) can be found in quadratures

dλ = eβp+2αU(p)

u′(�)
dp + eβp+2αU(p)

∑ εkd(p − ak)

U ′(ak) − U ′(p)
(43)

for this Hamiltonian hydrodynamic reduction.
Let us introduce the moments Ak = �εn

∫
U ′k (an) dan, then the hydrodynamic-type

system (42) can be rewritten as the Hamiltonian hydrodynamic chain

Ak
t =

k+2∑
n=0

Fk
n (A)An

x, k = 0, 1, 2, . . .
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determined by the Hamiltonian density h(A0, A1) = A1 + f (A0) (where f (A0) = (A0)2/2,
if α = 0 and f (A0) = A0 ln A0) and by the Dorfman Poisson bracket (see [30])

{A0, A0} =
∑

εnδ
′(x − x ′),

{Ak,An} = [k(αAk+n+1 + βAk+n + γAk+n−1)∂x + n∂x(αAk+n+1 + βAk+n + γAk+n−1)]δ(x − x ′).

For instance, this hydrodynamic chain is

A0
t = ∂x

[
αA2 + βA1 +

(
γ +

∑
εn

)
A0

]
Ak

t = (αAk+2 + βAk+1 + γAk)x + k(αAk+1 + βAk + γAk−1)A0
x, k = 1, 2, . . . ,

if the Hamiltonian density is h(A0, A1) = A1 + (A0)2/2.

6. The Gibbons–Tsarev system and hydrodynamic chains

In this section we consider the second simple and very important particular case

pt = ∂x[V (p)υ]. (44)

Then N component hydrodynamic reductions (23)

ri
t = υV ′(pi)ri

x

are compatible with the above generating function of conservation laws iff (see (29))

∂ip = V (p)
∂i ln υ

V ′(pi) − V ′(p)
.

It is easy to see that under re-scaling

dp

V (p)
= dp̃, V ′(p) = U ′(p̃),

one gets the main formula from the previous example (see (37)), where u = ln υ. The
corresponding equation is (see (38))

V V ′′ = αV ′2 + βV ′ + γ, (45)

where

V (p) = exp U(p̃), dp = exp U(p̃) dp̃. (46)

In general case (α �= 0) the function V (p) can be written in the parametric form only

V (p) = (q − q1)
q1

α(q1−q2) (q − q2)
− q2

α(q1−q2) ,

p = 1

α

∫
(q − q1)

q1
α(q1−q2)

−1
(q − q2)

− q2
α(q1−q2)

−1 dq.

The corresponding degenerate cases (see the above example) are V (p) = pk , where k is an
arbitrary constant, V (p) = ep, V (p) = cosh p (or V (p) = sinh p) and two others given in
the implicit form

p =
∫

dV

ln V
, p =

∫
dV√
ln V

.

Since the equations describing hydrodynamic reductions of both these examples (36) and
(44) are equivalent, one can recalculate any hydrodynamic reduction of one example to a
corresponding hydrodynamic reduction of the second example (the Hamiltonian reductions of
the generating function of conservation laws (44) are found in [23]). The relationship (46) is
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nontrivial. For instance, U(p̃) = p̃2/2 for the Benney hydrodynamic chain (see (5)), but V (p)

cannot be expressed via known elementary or special functions. Nevertheless, hydrodynamic
reductions of the Benney hydrodynamic chain can be recalculated. One can compare the
formulae (34) for (36) and (44)

∂p

∂ai
= V (p)∂υ/∂ai

V ′(ai) − V ′(p)

[
υ +

∑ V (ak)∂υ/∂ak

V ′(ak) − V ′(p)

]−1

,

∂p̃

∂ci
= ∂u/∂ci

U ′(ci) − U ′(p)

[
1 +

∑ ∂u/∂ck

U ′(ck) − U ′(p)

]−1

.

They are equivalent under the transformation (46) and under the same transformation for the
field variables ak ↔ ck ,

V (ai) = exp U(ci), dai = exp U(ci) dci .

The equation of the Riemann surface (43) also can be recalculated,

dλ = (V (p))2α−1 exp

[
β

∫
dp

V (p)

](
υ(�) dp

υ ′(�)
+

∑ εk

V (ak)

V (ak) dp − V (p) dak

V ′(ak) − V ′(p)

)
,

where � = �εk

∫
dak/V (ak), υ(�) = exp �, if α = 0; υ(�) = �, if α �= 0.

Example. The Lagrangian quasilinear equation associated with an elliptic curve.

The Lagrangian

L =
∫

zxzyzt dx dy dt

creates the Euler–Lagrange equation

ztzxy + zyzxt + zxzyt = 0, (47)

which is an integrable 2+1 quasilinear equation (see [15]). The pseudopotentials (cf (4), (5)
and (6); see also [11, 13]) are

Sx

zx

= ζ(σ ),
Sy

zy

= ζ(σ ) +
℘ ′(σ ) + ε

2℘(σ)
,

St

zt

= ζ(σ ) +
℘ ′(σ ) − ε

2℘(σ)
, (48)

where ζ(σ ) and ℘ ′(σ ) are Weiershtrass elliptic functions (ζ ′(σ ) = −℘(σ), ℘ ′2(σ ) =
4℘3(σ ) + ε2). Introducing the new functions a = zx, b = zy, c = zt , (47) can be written in
the form

at = cx, ay = bx, bt = cy, cay + bat + abt = 0.

Correspondingly, (48) can be written as the couple of generating functions of conservation
laws

py = ∂x

[(
p

a
+

℘ ′(σ ) + ε

2℘(σ)

)
b

]
, pt = ∂x

[(
p

a
+

℘ ′(σ ) − ε

2℘(σ)

)
c

]
, (49)

where p = Sx and σ can be found from ζ(σ ) = p/a.
The reciprocal transformation (see [31, 32])

dz = a dx + b dy + c dt, dt̃ = dt, dỹ = dy

reduces the above Lagrangian to

L̃ =
∫

xỹxt̃

x2
z

dz dỹ dt̃
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and (49) to the couple of generating functions of conservation laws

p̃ỹ = ∂z

[
℘ ′(σ ) + ε

2℘(σ)
b

]
, p̃t̃ = ∂z

[
℘ ′(σ ) − ε

2℘(σ)
c

]
, (50)

where p̃ = ζ(σ ). However, these generating functions of conservation laws are considered in
this section (see (44)). Indeed, equation (45)

V
∂2V

∂p̃2
= 3

(
∂V

∂p̃

)2

+ 9
∂V

∂p̃
+ 6

has the general solution given in the parametric form

V (p̃) = ℘ ′(σ ) ± ε

2℘(σ)
, p̃ = ζ(σ ).

7. Commuting flows and 2+1 quasilinear systems

In this section three different approaches in construction of commuting flows for any given
hydrodynamic chain are presented.

(1) Suppose all generating functions of conservation laws (26) are enumerated. Then
generating functions of conservation laws for commuting flows one should seek in the
forms

pt1 = ∂xψ1(u
1;p), pt2 = ∂xψ2(u

1, u2;p), . . . . (51)

The compatibility conditions ∂t (pt1) = ∂t1(pt ), ∂t (pt2) = ∂t2(pt ), . . . allow us to
reconstruct functions ψk in quadratures (the corresponding example is given by the
Benney hydrodynamic chain (1) and the Khohlov–Zabolotzkaya equation (4); see (5)
and (6)).

Example. Let us consider the couple of commuting generating functions of conservation
laws (cf (50))

py = ∂x[V (p)b], pt = ∂x[W(p)c].

The compatibility condition ∂t (py) = ∂y(pt ) yields (45)

V V ′′ =
(

1 +
β

α

)
V ′2 +

[
γ − δ − 2

βδ

α

]
V ′ +

δ

α
(βδ − αγ ),

WW ′′ =
(

1 +
δ

γ

)
W ′2 +

[
α − β − 2

βδ

γ

]
W ′ +

β

γ
(βδ − αγ ),

where 2+1 quasilinear system is (α, β, γ, δ are arbitrary constants)

bt = αbcx + βcbx, cy = γ cbx + δbcx.

(2) Let us replace u1 → p(ζ ) and t1 → τ(ζ ) in the first equation (51)

∂τ(ζ )p(λ) = ∂xψ1(p(ζ ), p(λ)). (52)

Definition. Equation (52) is called the generating function of conservation laws and
commuting flows.

All generating functions of conservation laws (51) can be obtained by the expansion of
(52) in the series according to the Bürmann–Lagrange series of p(ζ ), where ∂τ(ζ ) is the
formal series, whose coefficients ∂tk enumerate different commuting flows.
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Example. The Benney hydrodynamic chain has the generating function of conservation
laws (5) and the generating function of conservation laws and commuting flows is

∂τ(ζ )p(λ) = ∂x ln[p(λ) − p(ζ )], (53)

where A0
τ(ζ ) = ∂xp(ζ ). Substituting the expansion (7) for p(λ) into the above formula,

one can obtain the generating function of commuting flows in the form

A0
τ(ζ ) = ∂xp(ζ ), A1

τ(ζ ) = ∂x

(
(A0)2

2
+ p(ζ )

)
, . . . .

Substituting the expansion (7) for p(λ) into the above formula, one can obtain the
generating functions of conservation laws in the form (see (5) and (6))

pt1 = ∂x

(
p2

2
+ A0

)
, pt2 = ∂x

(
p3

3
+ A0p + A1

)
, . . . .

(3) Suppose for any given function ψ(u;p) (see (26)) we already know the corresponding
Hamiltonian hydrodynamic reductions

ai
t1 = ∂x

(
ḡik ∂h1

∂ak

)
,

where ḡik is a constant non-degenerate symmetric matrix. Then one can seek the higher
conservation law density h2 for this hydrodynamic-type system. This conservation law
density determines the higher commuting flow

ai
t2 = ∂x

(
ḡik ∂h2

∂ak

)
.

The generating function of conservation laws for this hydrodynamic-type system (as well
as for the corresponding hydrodynamic chain) can be found by the replacement ai → p

(see details in [23]). The generating functions of commuting flows are given by

ai
τ(ζ ) = ∂x

(
ḡik ∂p(ζ )

∂ak

)
.

Let us replace ∂τ(ζ ) → ∂t−1 and, correspondingly, p(ζ ) → A−1, then the generating
function of conservation laws (53) can be written in the form

p̃x = ∂t−1(ep̃ + A−1), (54)

where the generating function of the Miura-type transformations (see [33]) is given by
p̃ = ln(p − A−1). This generating function (54) determines the continuum limit of the
discrete KP hierarchy (see [6])

Bk
x = Bk+1

z + kBkB0
z , k = 0, 1, 2, . . . ,

where z ≡ t−1 and B0 ≡ A−1.

Remark. All moments Ak are connected with the moments Bk by the Miura-type
transformations

A0 = A0(B0, B1), A1 = A1(B0, B1, B2), A2 = A2(B0, B1, B2, B3), . . . ,

which can be obtained by a substitution the generating function of the Miura-type
transformations p = A−1 + exp p̃ into (10) and comparing with (see [6])

λ = ep̃ + B0 + B1 e−p̃ + B2 e−2p̃ + · · ·
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Let us substitute the expansion ∂τ(ζ ) = ∂t−1 + ζ∂t−2 + · · · and p(ζ ) → A−1 + ζA−2 + · · ·
into (53). Then the compatibility condition ∂t−2(∂t1p) = ∂t1(∂t−2p) yields the 2+1 shallow
water system (see [11])

∂t−2A0 = ∂xA
−2, ∂t1A−1 = ∂x

(
(A−1)2

2
+ A0

)
, ∂t1A−2 = ∂x(A

−1A−2), (55)

where

∂t−2p = ∂x

A−2

A−1 − p
.

The compatibility condition ∂t−2(∂t−1p) = ∂t−1(∂t−2p) yields the famous Boyer–Finley
equation

∂t−1A−1 = ∂x ln A−2, ∂t−1A−2 = ∂t−2A−1. (56)

In both cases (55) and (56) N component hydrodynamic reductions (11) and (see (23))

ri
t−1 = 1

pi − A−1
ri
x, ri

t−2 = A−2

(pi − A−1)2
ri
x

are compatible (i.e. ∂t1(ri
t−2) = ∂t−2(ri

t1); see [13, 24])

∂kp
i

pk − pi
=

∂k

(
1

pi−A−1

)
1

pk−A−1 − 1
pi−A−1

=
∂k

(
A−2

(A−1−pi)2

)
A−2

(A−1−pk)2 − A−2

(A−1−pi)2

,

iff the functions pi and A0 satisfy the Gibbons–Tsarev system (13), where

∂iA
−1 = ∂iA

0

pi − A−1
, ∂i ln A−2 = ∂iA

0

(pi − A−1)2
.

It is not easy to verify, if did not take into account, that all these 2+1 quasilinear systems (4),
(55) and (56) are members of the unique Benney hydrodynamic lattice (see [22]).

8. General case

The main statement of this paper is that all integrable hydrodynamic chains described by the
generating functions of conservation laws (21) can be split into sub-classes according to the
number M of the functions um. The first such a case (26) was considered in the previous
section (M = 1). The second case (M = 2) is

pt = ∂xψ(u, υ;p).

Then N component hydrodynamic reductions (23) are compatible with this generating function
if the compatibility conditions ∂i(∂kp) = ∂k(∂ip) are fulfilled, where

∂ip = ψu∂iu + ψυ∂iυ

ψp|p=pi − ψp

.

To complete this computation, we need some relationship between u and υ (except trivial link
υ(u)). Without lost of generality we can choose these field variables u and υ as a conservation
law density and a flux, respectively:

ut = υx.

Since the hydrodynamic-type system (23) has this conservation law,

∂iυ = ψp|p=pi ∂iu,
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and (cf (27), (29))

∂ip = ψu + ψυψp|p=pi

ψp|p=pi − ψp

∂iu.

However, in such a case the Gibbons–Tsarev system can be derived from the extended
compatibility conditions ∂i(∂kp) = ∂k(∂ip) and ∂i(∂kυ) = ∂k(∂iυ).

9. Conclusion and outlook

In this paper, a new look on a classification of the integrable hydrodynamic chains is
presented. The main object which should be under an investigation is the generating function
of conservation laws

pt = ∂xψ(u;p),

where all distinct cases are separated by the number M of independent functions um. The
simplest case (26) is considered in detail. Each such case has infinitely many sub-cases
enumerated by the number K of independent functions υk in the commuting generating
functions of conservation laws

py = ∂xϕ(υ;p).

Thus, all integrable hydrodynamic chains can be split into sub-classes by virtue of the two
numbers M and K only.

Suppose all these functions ψ(u;p) are found. Then the Gibbons–Tsarev system
describing N component hydrodynamic reductions for every function ψ(u;p) can be derived
automatically in the Riemann invariants and in the field variables ak (which are conservation
law densities) simultaneously. Then corresponding hydrodynamic-type systems with a local
Hamiltonian structure (as well as with a priori prescribed any nonlocal Hamiltonian structure)
can be extracted. The equation of the Riemann surface λ(u;p) can be found in quadratures
for the hydrodynamic reductions, whose characteristic velocities are invariant with respect to
any Lie group symmetry. Asymptotic of the equation of the Riemann surface in the vicinity
of any singular point (usually λ → ∞, p → ∞) yields explicit expressions of corresponding
integrable hydrodynamic chains. The ‘flat’ hydrodynamic reductions can be used for a
construction of a large class of particular solutions for these hydrodynamic chains and related
2+1 quasilinear equations.
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